Thematic Case Reviews

In these thematic reviews, the organisation and presentation of cases will be based on the latest educational research, including literature exploring the role of expertise in radiologic image interpretation; how to promote active learning in radiology trainees, and activities to simulate how experts through deliberate practice generate a holistic high-level representation of the image, which then fine-tunes the perception of potential lesions. These reviews will leverage on the large database of online published and unpublished (at the moment) "normal" and "abnormal" cases. Selected use of didactic instructional videos will be included.



Tuesday, 6 March 2018

Radiology Resident Tutorials January - March 2018

https://learningneuroradiology.blogspot.sg/2018/02/radiology-resident-tutorial-february_22.html







Reflect on the well know aphorism "You see what you look foryou look for what you know"


"Understanding basic theory using a few illustrative examples. Mastering a topic by exposure to and experience with many examples

Typical examples or real-life scenarios can be used to illustrate theory, and help students understand fundamental principles. Mastering a topic usually requires exposure to and experience with many examples, both typical and atypical, common to uncommon including subtle manifestations of a phenomenon. The traditional method of doing this is via a long apprenticeship, or many years of practice with feedback and experience. A digital collection of educational scenarios and cases can support and potentially shorten this educational and training process. Particularly if a systematic attempt is made to collect and curate a comprehensive collection of all possible educational scenarios and case-based examples, across the whole spectrum of professional practice. Online access to key elements, parts of and whole sections of these learning cases; used by students with guidance by instructors under a deliberate practice and mastery training framework, can potentially accelerate the educational process, and deepen learning."

above from

Goh, P.S. A series of reflections on eLearning, traditional and blended learning. MedEdPublish. 2016 Oct; 5(3), Paper No:19. Epub 2016 Oct 14.  http://dx.doi.org/10.15694/mep.2016.000105




What is the message from the "yellow curve" below?


https://learningneuroradiology.blogspot.sg/2018/02/radiology-resident-tutorial-february_11.html



see also


https://learningneuroradiology.blogspot.sg/2018/02/radiology-resident-tutorial-february.html

"How could one use this material to dramatically reduce case review time? 
Reduce study time?

Reduce residency duration?
Use training time in other ways?"

"How would you use this material to develop confidence and familiarity with less common conditions? 
Given that time is limited."

"How do you stay sharp, not rusty, get better (sharper)."

[Practice. With feedback. With reflection. With increasing difficulty. Systematically. Regularly. With material that is at hand. At your finger tips.]
        -Poh Sun (posted on 7 February 2018 @ 0358am)












or


and earlier


This article investigates the relation between mind wandering and the spacing effect in inductive learning. Participants studied works of art by different artists grouped in blocks, where works by a particular artist were either presented all together successively (the massed condition), or interleaved with the works of other artists (the spaced condition). The works of 24 artists were shown, with 12, 15, or 18 works by each artist being provided as exemplars. Later, different works by the same artists were presented for a test of the artists' identity. During the course of studying these works, participants were probed for mind wandering. It was found that people mind wandered more when the exemplars were presented in a massed rather than in a spaced manner, especially as the task progressed. There was little mind wandering and little difference between massed and spaced conditions toward the beginning of study. People were better able to correctly attribute the new works to the appropriate artist (inductive learning) when (a) they were in the spaced condition and (b) they had not been mind wandering. This research suggests that inductive learning may be influenced by mind wandering and that the impairment in learning with massed practice (compared to spaced practice) may be attributable, at least in part, to attentional factors-people are "on task" less fully when the stimuli are massed rather than spaced.
above abstract from


Inductive learning -- that is, learning a new concept or category by observing exemplars -- happens constantly, for example, when a baby learns a new word or a doctor classifies x-rays. What influence does the spacing of exemplars have on induction? Compared with massing, spacing enhances long-term recall, but we expected spacing to hamper induction by making the commonalities that define a concept or category less apparent. We asked participants to study multiple paintings by different artists, with a given artist's paintings presented consecutively (massed) or interleaved with other artists' paintings (spaced). We then tested induction by asking participants to indicate which studied artist (Experiments 1a and 1b) or whether any studied artist (Experiment 2) painted each of a series of new paintings. Surprisingly, induction profited from spacing, even though massing apparently created a sense of fluent learning: Participants rated massing as more effective than spacing, even after their own test performance had demonstrated the opposite.
above abstract from


see examples from Head and Neck Radiology also link below


When students encounter a set of concepts (or terms or principles) that are similar in some way, they often confuse one with another. For instance, they might mistake one word for another word with a similar spelling (e.g., allusion instead of illusion) or choose the wrong strategy for a mathematics problem because it resembles a different kind of problem. By one proposition explored in this review, these kinds of errors occur more frequently when all exposures to one of the concepts are grouped together. For instance, in most middle school science texts, the questions in each assignment are devoted to the same concept, and this blocking of exposures ensures that students need not learn to distinguish between two similar concepts. In an alternative approach described in this review, exposures to each concept are interleaved with exposures to other concepts, so that a question on one concept is followed by a question on a different concept. In a number of experiments that have compared interleaving and blocking, interleaving produced better scores on final tests of learning. The evidence is limited, though, and ecologically valid studies are needed. Still, a prudent reading of the data suggests that at least a portion of the exposures should be interleaved.
above quote from
Rohrer, D. (2012). Interleaving helps students distinguish among similar concepts. Educational Psychology Review, 24, 355-367


Learn To Study Using…Interleaving (The Learning Scientists)
















or

and earlier


or

or

or


or

or

or


or

or

or


or

or

or

and earlier





















https://learningneuroradiology.blogspot.sg/2018/01/radiology-resident-tutorial-february.html











or

https://learningneuroradiology.blogspot.sg/2018/01/radiology-resident-tutorial-january-2018.html



or

or

or


or

or

or


or

or

or


or

or

or

No comments:

Post a Comment

Note: only a member of this blog may post a comment.